

1. Signalment/History 2. Rule out artifacts 3. Determine the heart rate • Instantaneous • Average 4. Determine the cardiac rhythm 5. Measure amplitudes, widths, intervals 6. Apply criteria for chamber enlargement 7. Calculate mean electrical axis

Analysis of Cardiac Arrhythmias

- Site of impulse origin
 - Supraventricular: SA node, atria, AV node
 - Ventricular
- · Rate: atrial and ventricular
- Timing
 - Premature beats: occur early in the sequence of normal beats
 - Escape beats: occur after a pause in the sequence of beats

Analysis of Cardiac Arrhythmias

- Rhythm
 - Regularity
 - Regular
 - Irregular
 - Regularly irregular (pattern)
 - Irregularly irregular (random)
 - P wave for every QRS complex?
 - QRS complex for every P wave?
 - Temporal relationship between P waves and QTS complexes

CANADA WEST YETHINANY SPECIALISTS Sinus Rhythm Lead II 50mm/sec

- · Normal sequence of cardiac activation
- · Site of origin: SA node
- · Rate: species and size dependent
- Rhythm: regular sequence of P, QRS, T waves; consistent P-P, P-R, R-R intervals

- Normal sequence of P-QRS-T waves
- Rhythm: regularly irregular
 - heart rate increases during late inspiration-early expiration
 - heart rate decreases during late expiration-early inspiration

- Origin of impulse shifts slightly within the SA node resulting in changes in the P wave morphology
- Usually associated with changes in vagal tone due to respiration
 - Inspiration: P wave taller
 - Expiration: P wave smaller

- Similar criteria for sinus rhythm except for the heart rate which is elevated
 - Regular sequence of P-QRS-T waves
 - Dogs: >160-180 bpm; cats >240 bpm
- · Usually due to elevated sympathetic tone

- Rate: dogs <70 bpm; cats <120bpm
- Sinus arrhythmia and wandering pacemaker may also be present
- Treatment: not usually required, usually due to elevated vagal tone

- Ectopic pacemaker depolarizes more rapidly than the SA node: occur earlier than expected
 - Supraventricular (atrial, junctional)
 - Ventricular
- Occur in a wide variety of cardiac and extra-cardiac diseases

- Short R-R interval; P wave morphology altered
- Impulse uses the normal ventricular conduction pathway (His-Purkinje system)
 - Normal QRS configuration
- · Followed by non-compensatory pause (= 1 R-R interval)

- Short R-R interval
- Abnormal QRS morphology (wide and bizarre)
- Uniform or multiform
- Not associated with a P wave
- Followed by compensatory pause (>1 R-R interval)

- Rate: commonly 150-300 bpm in dogs
- Rhythm: regular and rapid series of P-QRS-T waves
- QRS morphology normal
- P waves may be buried in preceding T wave
- · Presence of atrial premature beats is common

- Irregularly irregular rhythm
- Absence of P waves
- Supraventricular QRS-T morphology
- · Additional feature: undulating baseline

- - F waves ("sawtooth" baseline)
- Rate
 - F wave rate: 300-500 bpm
 - Ventricular rate: variable and dependent on AV nodal conduction

- Rhythm: regular
- HR > 180 bpm
- Morphology: QRS wide and bizarre
- P waves have no relationship to the QRS wave and are usually buried within the QRS complex
- unifocal or multifocal; sustained vs. non-sustained

- · Accelerated ventricular escape rhythm
 - Onset usually follows a pause in the rhythm rather than occurring prematurely
- Rate usually 70-150 bpm (<180 bpm) and similar to the prevailing sinus rate

- Rate: no organized ventricular contractions
- ECG: baseline undulations of various amplitude and shape; no discernible P, QRS, T waves
- · Course vs. Fine VF

- Prolonged P-R interval
 - Dogs >0.13 sec
 - Cats >0.09 sec
- Each P wave produces a QRS complex

- Rate: ventricular rate slower than the atrial rate
- P waves present without a corresponding QRS complex

- No consistent relationship between the P waves and QRS complexes (variable P-R interval)
- QRS morphology abnormal
- P wave (atrial) rate faster than the QRS (ventricular) rate

- · Absence of P waves in all leads
- Slow regular escape rhythm (junctional or ventricular)

CANADA WEST

Bundle Branch Block

- Right bundle branch block (RBBB)
 - Seen commonly in otherwise normal dogs
 - No hemodynamic abnormalities are associated with RBBB
 - No treatment needed
- Left bundle branch block (LBBB)
 - Usually associated with significant underlying heart disease
 - Presence of LBBB should prompt a cardiac work-up to identify the underlying cause

- · Normal P wave and P-R interval
- QRS >0.08 sec
- · Right axis shift: MEA>150 degrees
- · Notched S waves in I, II, III, aVF common

- · P wave and P-R interval normal
- · QRS duration >0.08 seconds
- · Normal mean electrical axis
- Partial LBBB may cause a left axis shift
- Notched R wave in I, II, III, aVF common

CANADA WEST RV enlargement criteria S wave lead I Deep S waves on II, V2 and V4 MEA shift to the right Associated with P-pulmonale Dogs: MEA > 103⁰ S > 0.05 mV inS > 0.35 mV in II $S > 0.8 \text{ mV in } CV_6LL$ $S > 0.7 \text{ mV in } CV_6LU$ R/S > 0.87 in CV_6LU Q > 0.3 mV aVR+T > 0.25 mV in I R' in lead II

